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1.0 Product Definition 

Soils contain the largest terrestrial pool of organic carbon (C), storing at least twice as much C as 

earth’s atmosphere (Köchy et al., 2015; Scharlemann et al., 2014). Uncertainties surrounding the response 

of soils to climatic and other changes contribute substantial uncertainty to C cycle and climate projections 

in the Earth system (Arora et al., 2013; Friedlingstein et al., 2014; Todd-Brown et al., 2013): the 

magnitude of their uncertainty is comparable to that of cloud feedbacks, traditionally regarded as the most 

significant unknown in climate modeling (Gregory et al., 2009). For example, Jones and Falloon (2009) 

reported a strong relationship between changes in soil organic C (SOC) and the strength of simulated 

C‐climate feedbacks within ESMs, while Riley et al. (2018) and Gaudio et al. (2015) found that model 

representation of nitrogen biogeochemistry and uptake patterns had significant climatic effects at larger 

spatial scales. At the same time, models’ structural uncertainty (the uncertainty deriving from how various 

models represent particular processes differently) is an unknown factor (Tebaldi and Knutti, 2007); there 

have been few attempts to examine how structural uncertainty within a single model—as opposed to 

model-to-model variability in, e.g., CMIP5 (Friedlingstein et al., 2014; Knutti and Sedláček, 2012)—

affects model behavior and performance (Ricciuto et al., 2008). The investigation here indicates that the 

structural uncertainty deriving from models’ biogeochemical process representation is significant, 

although not as large as other sources such as parametric uncertainty (uncertainty deriving from the model 

inputs such as field-based data). 

2.0 Product Documentation 

The U.S. Department of Energy’s Energy Exascale Earth System Model (E3SM) is unusual among 

ESMs in that it has two approaches to terrestrial biogeochemistry in its land model, the E3SM Land 

Model (ELM): the primary approach ELMv1-CTC-CNP (led by a team at Oak Ridge National 

Laboratory) and the alternative ELMv1-ECA-CNP (led by Lawrence Berkeley National Laboratory 

group). These differ in three key aspects of biogeochemistry—stoichiometry, allocation, and nutrient 

competition—and represent distinct approaches to the overall problem, as described below. To evaluate 

the effects of uncertainty in biogeochemistry methodology, we performed a series of site- and global-

scale uncoupled simulations using both CTC and ECA. The models’ outputs were compared against a 

variety of observational reference data sets. This work will allow the model structural uncertainty in this 

area to be assessed, for the first time, against other sources of uncertainty, e.g., parametric and ensemble 

sources. 

3.0 Detailed Results 

3.1  
Structural and Conceptual Differences between the Approaches 

The CTC approach is grounded in the v1 E3SM coupled biogeochemistry science questions, as the 

team argues that models must be designed to address specific research problems. This aims for the 

simplest and most tractable set of model changes that can still represent dominant ecosystem-level 

processes hypothesized to exert control over climate system feedbacks in the face of coupled C-nutrient 
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interactions and multiple nutrient limitations. A specific CTC feature is phosphorus cycle dynamics 

(Yang et al., 2014) in the soil and vegetation components of the E3SM Land Model (ELM), using newly 

developed global-scale data sets describing the spatial distribution of different soil phosphorus pools 

(Yang et al., 2013). Rather than proceed to second- and third-order process representations that could not 

be parameterized effectively from existing observations, the team first addressed the emergent problems 

in related processes. This approach prioritizes the spatial distribution of different nutrient pools, and 

integrates ecosystem-level nutrient cycle to study CO2-climate system feedback interactions. The 

modeling approach is flexible and simple, but able to capture process-level understanding at global scales. 

In contrast, the ECA approach embraces and implements many of the complexities of the 

biogeochemical processes that explain observed nutrient constraints on the C cycle, with the team 

including in ECA what they consider to be the most important and relevant trait-based processes: (1) N 

and P competition between microbes, abiotic processes, and roots using the trait-based Equilibrium 

Chemistry Approximation (ECA) approach (Zhu et al., 2017); (2) dynamic plant CNP stoichiometry 

(Ghimire et al., 2016); (3) leaf CNP effects on photosynthesis (Riley et al., 2018); and (4) dynamic CNP 

allocation within the plant. The highly mechanistic ECA constitutes a novel approach to representing 

competition between plants and soil microbes for limiting nutrients; this process sophistication and 

flexibility means that ECA may be more likely to correctly represent perturbation responses to factors 

likely to change over coming decades (e.g., CO2, temperature, hydrology). 

Modeling Runs and Comparison Benchmarks 

The following series of simulations was performed using both the CTC and ECA biogeochemistry 

models: 

• Four global 2° runs with vertically resolved soil BGC using the observed atmospheric CRUNCEP 

versus GSWP3 driving data sets, and no land use change versus land use change. These each had 

varying CO2 concentrations and standard data sets for changing N deposition over the historical time 

period. 

• A series of site-level runs co-located with FLUXNET observations (Baldocchi, 2008) using site-

specific driving data but global parameterizations of, e.g., Plant Functional Types (PFTs). 

• A series of site-level runs at nitrogen (N) and phosphorus (P) fertilization sites. 

We performed three primary groups of evaluations based on these runs, model-data comparisons that 

aimed to test the models’ relative performance in biogeochemical cycling, energy, and water exchange: 

• ILAMB: the primary E3SM diagnostic tool, with multifaceted global coverage (Hoffman et al., 2017; 

Luo et al., 2016); https://www.ilamb.org.  

• FLUXNET: single sites (not global) but high-quality and widely accepted measurements of land-

atmosphere CO2 and energy exchange (Baldocchi, 2008); http://fluxnet.fluxdata.org.  

• GOLUM: model-data product, not observational; global coverage, integrated carbon, nitrogen, and 

phosphorus stocks and fluxes (Wang et al., 2018). 

https://paperpile.com/c/57qoGG/B8Ty+Yo2I
https://paperpile.com/c/57qoGG/B8Ty+Yo2I
https://www.ilamb.org/
https://paperpile.com/c/57qoGG/sc7F
http://fluxnet.fluxdata.org/
https://paperpile.com/c/57qoGG/mCqd
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Results: ILAMB 

Carbon stocks and fluxes were generally better simulated using GSWP3 than CRUNCEP; with land 

use than without; and slightly better, overall, by CTC than by ECA (although there were exceptions such 

as burned area, see below; net ecosystem exchange (NEE); and soil C). There was no obvious difference 

when examining relationships between biotic and abiotic variables, except perhaps for GPP versus air 

temperature and LAI versus precipitation, where the CTC model seemed significantly better (Figure 1). 

The GSWP3 driving data almost always produced higher scores than did the CRUNCEP data. The CTC 

runs did not exhibit burned area commensurate with the GFED benchmark data, scoring 0.44 compared to 

ECA’s 0.53 score. Neither model fully captured the annual fire cycle, but ECA came closer. 

 

Figure 1. Summary graphic from the ILAMB system showing model performance in a variety of two-

variable relationships; green is better in both the absolute (left) and relative (right) panels.  

Results: FLUXNET 

The FLUXNET2015 Tier1 data release (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) 

includes data collected at sites from multiple regional flux networks, and features several improvements 

to the data quality control protocols and the data processing pipeline. Many studies have compared model 

and remote-sensing results to its data, and/or used these data for upscaling to global gridded products. 

Model performance was assessed at both monthly and annual timescales. 

Both models tend to under-predict annual GPP at medium to high values. The ECA model 

outperformed CTC for monthly and annual GPP, but this difference was driven by a single evergreen 

broadleaf forest site (AU-Tum). The models' predictive ability varied wildly by IGBP code (i.e., 

ecosystem type, Figure 2). They exhibited particular problems with deciduous broadleaf forests, open 

shrublands, and wetlands, and particular strengths in evergreen broadleaf forests, grasslands, savannas, 

and woody savannas. Significant divergences between the models were seen for mixed forests, open 

shrublands, and wetlands. 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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Figure 2. Monthly FLUXNET GPP versus simulated GPP, by ecosystem type: deciduous broadleaf 

forests (DBF), evergreen broadleaf forests (EBF), evergreen needleleaf forests (ENF), grasslands (GRA), 

mixed forests (MF), open shrublands (OSH), savannas (SAV), wetlands (WET), and woody savannas 

(WSA). Solid black lines are 1:1. 

Both models had trouble with NEE, particularly at sites with strong annual carbon sinks. FLUXNET 

annual NEE is known to be quite problematic, however, because of CO2 advection and storage-term 

uncertainties. The models generally did a good job with latent heat flux at the FLUXNET sites. 

Results: GOLUM 

This analysis compared the area-weighted latitudinal variations of mean annual pools and fluxes from 

2001 to 2010 as simulated by the models with those from the GOLUM data set, a new (Wang et al., 2018) 

gridded product that combines the CARDAMOM (Pinnington et al., 2016) data-constrained C-cycle 

analysis with spatially explicit data-driven estimates of N and P inputs and losses and with observed 

stoichiometric ratios. The variables compared included a wide variety of root, wood, vegetation, and soil 

pools of C, N, and P; NPP; and plant N and P uptake. For each variable, an agreement index, the Pearson 

correlation coefficient, and RMSE were computed.  

https://paperpile.com/c/57qoGG/mCqd
https://paperpile.com/c/57qoGG/P9la
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In general, CTC outperformed ECA when comparing against GOLUM (Figure 3). ECA simulated 

higher P in vegetation biomass than in soil; much higher litter C and N than both CTC and GOLUM data; 

and highly variable litter P. 

 

Figure 3. Zonal latitudinal values for root and vegetation N and P for ECA (“Model 1”), CTC (“Model 

2”), and GOLUM data. 

4.0 Summary 

Typical model-to-model comparisons, e.g., using CMIP5 (Taylor et al., 2012) outputs, typically 

confound at least two separate aspects: the structural uncertainty of different process representations, and 

the model uncertainty derived from different approaches to modeling the earth system. This effort 

afforded a rare look at structural uncertainty within a single model framework, allowing for a direct 

comparison with model variability. For example, the CTC and ECA approaches within ELM differ in 

their estimation of global heterotrophic respiration (RH), a major terrestrial C flux, by 16-20%, with a 

standard deviation of ~5 Pg C. This can then be directly compared to the CMIP5 RH spread of 41-72 Pg 

C with a standard deviation of ~9 Pg C (Shao et al., 2013). Input scenarios—the emissions projections 

used to drive ESMs during the 21st century—and internal variability (Kay et al., 2015) constitute even 

larger sources of uncertainty. 
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Looking specifically at ELM, we conclude that both the CTC and ECA approaches have made 

progress in improving aspects of the performance of the model’s terrestrial biogeochemistry: the former 

prioritizing longer timescales and ecosystem- to global-level questions, and the latter shorter timescales 

and soil biogeochemical process fidelity. This raises interesting questions about the degree of model 

process realism and parametric complexity appropriate for a global ESM, versus short- and medium-term 

risk in terms of model performance and work required. It may be, for example, that the most ‘realistic’ 

approach at the site scale does not provide adequate global performance because of scaling or driving data 

issues. Finally, this analysis provides the basis for a subsequent, quantitative assessment of structural 

factors relative to other sources of model variability. 
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